Title: | Minimal R/Shiny Interface to JavaScript Library 'ECharts' |
---|---|
Description: | Deliver the full functionality of 'ECharts' with minimal overhead. 'echarty' users build R lists for 'ECharts' API. Lean set of powerful commands. |
Authors: | Larry Helgason, with initial code from John Coene's library echarts4r |
Maintainer: | Larry Helgason <[email protected]> |
License: | Apache License (>= 2.0) |
Version: | 1.6.4.1 |
Built: | 2024-11-05 08:00:47 UTC |
Source: | https://github.com/helgasoft/echarty |
echarty
echarty provides a lean interface between R and Javascript library ECharts. We encourage users to follow the original ECharts API documentation to construct charts with echarty. Main command ec.init can set multiple native ECharts options to build a chart. The benefits - learn a very limited set of commands, and enjoy the full functionality of ECharts.
pipe-friendly - supports both %>% and |> commands have three prefixes to help with auto-completion:
ec. for general functions, like ec.init
ecs. for Shiny functions, like ecs.output
ecr. for rendering functions, like ecr.band
For event handling in Shiny see sample code in
eshiny.R,
run as demo(eshiny)
.
Echarty has three built-in event callbacks - click, mouseover,
mouseout. All other ECharts
events could be
initialized through p$x$capture
. Another option is to use p$x$on
with JavaScript handlers, see code in
ec.examples.
These are htmlwidget and ECharts initialization parameters supported by echarty. There are code samples for most of them in ec.examples:
capture = event name(s), to monitor events, usually in Shiny
on = define JavaScript code for event handling, see ECharts
registerMap = define a map from a geoJSON file, see ECharts
group = group-name of a chart, see ECharts
connect = command to connect charts with same group-name, see ECharts
locale = EN(default) or ZH, set from locale parameter of ec.init, see ECharts.
renderer = canvas(default) or svg, set from renderer in ec.init, see ECharts.
jcode = custom JavaScript code to execute, set from js parameter of ec.init
R language counting starts from 1. Javascript (JS) counting starts from 0. ec.init supports R-counting of indexes (ex. encode) and dimension (ex. visualMap). ec.upd requires indexes and dimensions to be set with JS-counting.
To allow access to charts from JS. ec_chart(id) - get the chart object by id (former get_e_charts) ec_option(id) - get the chart’s option object by id (former get_e_charts_opt) Parameter ‘id’ could be the internal variable echwid, or the value set through ec.init parameter elementId. See demo code in ec.examples
Here is the complete list of sample code locations:
code in Github tests
command examples, like in ec.init
Shiny code is in
eshiny.R,
run with demo(eshiny)
demos on RPubs
searchable gists
answers to Github issues
Options are set with R command options. Echarty uses the following options:
echarty.theme = name of theme file, without extension, from folder
/inst/themes
echarty.font = font family name
echarty.urlTiles = tiles URL template for leaflet maps
# set/get global options options('echarty.theme'='jazz') # set getOption('echarty.theme') # get #> [1] "jazz" options('echarty.theme'=NULL) # remove
Helper function to display/format data column(s) by index or name
ec.clmn(col = NULL, ..., scale = 1)
ec.clmn(col = NULL, ..., scale = 1)
col |
A single column index(number) or column name(quoted string), |
... |
Comma separated column indexes or names, only when col is sprintf. This allows formatting of multiple columns, as for a tooltip. |
scale |
A positive number, multiplier for numeric columns. When scale is 0, all numeric values are rounded. |
This function is useful for attributes like formatter, color, symbolSize, label.
Column indexes are counted in R and start with 1.
Omit col or use index -1 for single values in tree/pie charts, axisLabel.formatter or valueFormatter. See ec.data dendrogram example.
Column indexes are decimals for combo charts with multiple series, see ecr.band example. The whole number part is the serie index, the decimal part is the column index inside.
col as sprintf has the same placeholder %@ for both column indexes or column names.
col as sprintf can contain double quotes, but not single or backquotes.
Template placeholders with formatting:
%@ will display column value as-is.
%L@ will display a number in locale format, like '12,345.09'.
%LR@ rounded number in locale format, like '12,345'.
%R@ rounded number, like '12345'.
%R2@ rounded number, two digits after decimal point.
%M@ marker in series' color.
For trigger='axis' (multiple series) one can use decimal column indexes.
See definition above and example below.
A JavaScript code string (usually a function) marked as executable, see JS.
library(dplyr) tmp <- data.frame(Species = as.vector(unique(iris$Species)), emoji = c('A','B','C')) df <- iris |> inner_join(tmp) # add 6th column emoji df |> group_by(Species) |> ec.init( series.param= list(label= list(show= TRUE, formatter= ec.clmn('emoji'))), tooltip= list(formatter= # with sprintf template + multiple column indexes ec.clmn('%M@ species <b>%@</b><br>s.len <b>%@</b><br>s.wid <b>%@</b>', 5,1,2)) ) # tooltip decimal indexes work with full data sets (no missing/partial data) ChickWeight |> mutate(Chick=as.numeric(Chick)) |> filter(Chick>47) |> group_by(Chick) |> ec.init( tooltip= list(trigger='axis', formatter= ec.clmn("48: %@<br>49: %@<br>50: %@", 1.1, 2.1, 3.1)), xAxis= list(type='category'), legend= list(formatter= 'Ch.{name}'), series.param= list(type='line', encode= list(x='Time', y='weight')), )
library(dplyr) tmp <- data.frame(Species = as.vector(unique(iris$Species)), emoji = c('A','B','C')) df <- iris |> inner_join(tmp) # add 6th column emoji df |> group_by(Species) |> ec.init( series.param= list(label= list(show= TRUE, formatter= ec.clmn('emoji'))), tooltip= list(formatter= # with sprintf template + multiple column indexes ec.clmn('%M@ species <b>%@</b><br>s.len <b>%@</b><br>s.wid <b>%@</b>', 5,1,2)) ) # tooltip decimal indexes work with full data sets (no missing/partial data) ChickWeight |> mutate(Chick=as.numeric(Chick)) |> filter(Chick>47) |> group_by(Chick) |> ec.init( tooltip= list(trigger='axis', formatter= ec.clmn("48: %@<br>49: %@<br>50: %@", 1.1, 2.1, 3.1)), xAxis= list(type='category'), legend= list(formatter= 'Ch.{name}'), series.param= list(type='line', encode= list(x='Time', y='weight')), )
Make data lists from a data.frame
ec.data(df, format = "dataset", header = FALSE, ...)
ec.data(df, format = "dataset", header = FALSE, ...)
df |
Required chart data as data.frame. |
format |
Output list format
|
header |
for dataset, to include the column names or not, default TRUE. Set it to FALSE for series.data. |
... |
optional parameters
Optional parameter for names:
|
format='boxplot'
requires the first two df columns as:
column for the non-computational categorical axis
column with (numeric) data to compute the five boxplot values
Additional grouping is supported on a column after the second. Groups will show in the legend, if enabled.
Returns a list(dataset, series, xAxis, yAxis)
to set params in ec.init.
Make sure there is enough data for computation, 4+ values per boxplot.format='treeTT'
expects data.frame df columns pathString,value,(optional itemStyle) for FromDataFrameTable.
It will add column 'pct' with value percentage for each node. See Details.
A list for dataset.source, series.data or other lists:
For boxplot - a named list, see Details and Examples
For dendrogram & treePC - a tree structure, see format in tree data
some live code samples
library(dplyr) ds <- iris |> relocate(Species) |> ec.data(format= 'boxplot', jitter= 0.1, layout= 'v') ec.init( dataset= ds$dataset, series= ds$series, xAxis= ds$xAxis, yAxis= ds$yAxis, legend= list(show= TRUE), tooltip= list(show= TRUE) ) hc <- hclust(dist(USArrests), "complete") ec.init(preset= FALSE, series= list(list( type= 'tree', orient= 'TB', roam= TRUE, initialTreeDepth= -1, data= ec.data(hc, format='dendrogram'), # layout= 'radial', symbolSize= ec.clmn(scale= 0.33), ## exclude added labels like 'pXX', leaving only the originals label= list(formatter= htmlwidgets::JS( "function(n) { out= /p\\d+/.test(n.name) ? '' : n.name; return out;}")) )) ) # build required pathString,value and optional itemStyle columns df <- as.data.frame(Titanic) |> rename(value= Freq) |> mutate( pathString= paste('Titanic\nSurvival', Survived, Age, Sex, Class, sep='/'), itemStyle= case_when(Survived=='Yes' ~"color='green'", TRUE ~"color='LightSalmon'")) |> select(pathString, value, itemStyle) ec.init( series= list(list( data= ec.data(df, format='treeTT'), type= 'tree', symbolSize= ec.clmn("(x) => {return Math.log(x)*10}") )), tooltip= list(formatter= ec.clmn('%@<br>%@%','value','pct')) ) # column itemStyle_color will become itemStyle= list(color=...) in data list # attribute names separator (nasep) is "_" df <- data.frame(name= c('A','B','C'), value= c(1,2,3), itemStyle_color= c('chartreuse','lightblue','pink'), itemStyle_decal_symbol= c('rect','diamond','none'), emphasis_itemStyle_color= c('darkgreen','blue','red') ) ec.init(series.param= list(type='pie', data= ec.data(df, 'names', nasep='_')))
library(dplyr) ds <- iris |> relocate(Species) |> ec.data(format= 'boxplot', jitter= 0.1, layout= 'v') ec.init( dataset= ds$dataset, series= ds$series, xAxis= ds$xAxis, yAxis= ds$yAxis, legend= list(show= TRUE), tooltip= list(show= TRUE) ) hc <- hclust(dist(USArrests), "complete") ec.init(preset= FALSE, series= list(list( type= 'tree', orient= 'TB', roam= TRUE, initialTreeDepth= -1, data= ec.data(hc, format='dendrogram'), # layout= 'radial', symbolSize= ec.clmn(scale= 0.33), ## exclude added labels like 'pXX', leaving only the originals label= list(formatter= htmlwidgets::JS( "function(n) { out= /p\\d+/.test(n.name) ? '' : n.name; return out;}")) )) ) # build required pathString,value and optional itemStyle columns df <- as.data.frame(Titanic) |> rename(value= Freq) |> mutate( pathString= paste('Titanic\nSurvival', Survived, Age, Sex, Class, sep='/'), itemStyle= case_when(Survived=='Yes' ~"color='green'", TRUE ~"color='LightSalmon'")) |> select(pathString, value, itemStyle) ec.init( series= list(list( data= ec.data(df, format='treeTT'), type= 'tree', symbolSize= ec.clmn("(x) => {return Math.log(x)*10}") )), tooltip= list(formatter= ec.clmn('%@<br>%@%','value','pct')) ) # column itemStyle_color will become itemStyle= list(color=...) in data list # attribute names separator (nasep) is "_" df <- data.frame(name= c('A','B','C'), value= c(1,2,3), itemStyle_color= c('chartreuse','lightblue','pink'), itemStyle_decal_symbol= c('rect','diamond','none'), emphasis_itemStyle_color= c('darkgreen','blue','red') ) ec.init(series.param= list(type='pie', data= ec.data(df, 'names', nasep='_')))
Learn by example - copy/paste code from Examples below.
This code collection is to demonstrate various concepts of
data preparation, conversion, grouping,
parameter setting, visual fine-tuning,
custom rendering, plugins attachment,
Shiny plots & interactions through Shiny proxy.
ec.examples()
ec.examples()
No return value, used only for help
website has many more examples
library(dplyr); library(echarty) #------ Basic scatter chart, instant display cars |> ec.init() #------ Same chart, change theme and save for further processing p <- cars |> ec.init() |> ec.theme('dark') p #------ parallel chart ToothGrowth |> ec.init(ctype= 'parallel') #------ JSON back and forth tmp <- cars |> ec.init() tmp json <- tmp |> ec.inspect() ec.fromJson(json) |> ec.theme("dark") #------ Data grouping iris |> mutate(Species= as.character(Species)) |> group_by(Species) |> ec.init() # by non-factor column Orange |> group_by(Tree) |> ec.init( series.param= list(symbolSize= 10, encode= list(x='age', y='circumference')) ) #------ Polar bar chart cnt <- 5; set.seed(222) data.frame( x = seq(cnt), y = round(rnorm(cnt, 10, 3)), z = round(rnorm(cnt, 11, 2)), colr = rainbow(cnt) ) |> ec.init( preset= FALSE, polar= list(radius= '90%'), radiusAxis= list(max= 'dataMax'), angleAxis= list(type= "category"), series= list( list(type= "bar", coordinateSystem= "polar", itemStyle= list(color= ec.clmn('colr')), label= list(show= TRUE, position= "middle", formatter= "y={@[1]}") ), list(type= 'scatter', coordinateSystem= "polar", itemStyle= list(color= 'black'), encode= list(angle='x', radius='z')) ) ) #------ Area chart mtcars |> dplyr::relocate(wt,mpg) |> arrange(wt) |> group_by(cyl) |> ec.init(ctype= 'line', series.param= list(areaStyle= list(show=TRUE)) ) #------ Plugin leaflet quakes |> dplyr::relocate('long') |> # set order to long,lat mutate(size= exp(mag)/20) |> head(100) |> # add accented size ec.init(load= 'leaflet', tooltip= list(formatter= ec.clmn('magnitude %@', 'mag')), legend= list(show=TRUE), series.param= list(name= 'quakes', symbolSize= ec.clmn(6, scale=2)) # 6th column is size ) #------ Plugin 'world' with visualMap set.seed(333) cns <- data.frame( val = runif(3, 1, 100), dim = runif(3, 1, 100), nam = c('Brazil','China','India') ) cns |> group_by(nam) |> ec.init(load= 'world', timeline= list(s=TRUE), series.param= list(type='map', encode=list(value='val', name='nam')), toolbox= list(feature= list(restore= list())), visualMap= list(calculable=TRUE, dimension=2) ) #------ Plugin 'world' with lines and color coding if (interactive()) { flights <- NULL flights <- try(read.csv(paste0('https://raw.githubusercontent.com/plotly/datasets/master/', '2011_february_aa_flight_paths.csv')), silent = TRUE) if (!is.null(flights)) { tmp <- data.frame(airport1 = unique(head(flights,10)$airport1), color = c("#387e78","#eeb422","#d9534f",'magenta')) tmp <- head(flights,10) |> inner_join(tmp) # add color by airport ec.init(load= 'world', geo= list(center= c(mean(flights$start_lon), mean(flights$start_lat)), zoom= 7, map='world' ), series= list(list( type= 'lines', coordinateSystem= 'geo', data= lapply(ec.data(tmp, 'names'), function(x) list(coords = list(c(x$start_lon,x$start_lat), c(x$end_lon,x$end_lat)), colr = x$color) ), lineStyle= list(curveness=0.3, width=3, color=ec.clmn('colr')) )) ) } } #------ registerMap JSON # registerMap supports also maps in SVG format, see website gallery if (interactive()) { json <- jsonlite::read_json("https://echarts.apache.org/examples/data/asset/geo/USA.json") dusa <- USArrests dusa$states <- row.names(dusa) p <- ec.init(preset= FALSE, series= list(list(type= 'map', map= 'USA', roam= TRUE, zoom= 3, left= -100, top= -30, data= lapply(ec.data(dusa, 'names'), function(x) list(name=x$states, value=x$UrbanPop)) )), visualMap= list(type='continuous', calculable=TRUE, inRange= list(color = rainbow(8)), min= min(dusa$UrbanPop), max= max(dusa$UrbanPop)) ) p$x$registerMap <- list(list(mapName= 'USA', geoJSON= json)) p } #------ locale mo <- seq.Date(Sys.Date() - 444, Sys.Date(), by= "month") df <- data.frame(date= mo, val= runif(length(mo), 1, 10)) p <- df |> ec.init(title= list(text= 'locale test')) p$x$locale <- 'ZH' p$x$renderer <- 'svg' p #------ Pie isl <- data.frame(name=names(islands), value=islands) |> filter(value>100) |> arrange(value) ec.init( preset= FALSE, title= list(text = "Landmasses over 60,000 mi\u00B2", left = 'center'), tooltip= list(trigger='item'), #, formatter= ec.clmn()), series= list(list(type= 'pie', radius= '50%', data= ec.data(isl, 'names'), name='mi\u00B2')) ) #------ Liquidfill plugin if (interactive()) { ec.init(load= 'liquid', preset=FALSE, series= list(list( type='liquidFill', data=c(0.66, 0.5, 0.4, 0.3), waveAnimation= FALSE, animationDuration=0, animationDurationUpdate=0)) ) } #------ Heatmap times <- c(5,1,0,0,0,0,0,0,0,0,0,2,4,1,1,3,4,6,4,4,3,3,2,5,7,0,0,0,0,0, 0,0,0,0,5,2,2,6,9,11,6,7,8,12,5,5,7,2,1,1,0,0,0,0,0,0,0,0,3,2, 1,9,8,10,6,5,5,5,7,4,2,4,7,3,0,0,0,0,0,0,1,0,5,4,7,14,13,12,9,5, 5,10,6,4,4,1,1,3,0,0,0,1,0,0,0,2,4,4,2,4,4,14,12,1,8,5,3,7,3,0, 2,1,0,3,0,0,0,0,2,0,4,1,5,10,5,7,11,6,0,5,3,4,2,0,1,0,0,0,0,0, 0,0,0,0,1,0,2,1,3,4,0,0,0,0,1,2,2,6) df <- NULL; n <- 1; for(i in 0:6) { df <- rbind(df, data.frame(0:23, rep(i,24), times[n:(n+23)])); n<-n+24 } hours <- ec.data(df); hours <- hours[-1] # remove columns row times <- c('12a',paste0(1:11,'a'),'12p',paste0(1:11,'p')) days <- c('Saturday','Friday','Thursday','Wednesday','Tuesday','Monday','Sunday') ec.init(preset= FALSE, title= list(text='Punch Card Heatmap'), tooltip= list(position='top'),grid=list(height='50%',top='10%'), xAxis= list(type='category', data=times, splitArea=list(show=TRUE)), yAxis= list(type='category', data=days, splitArea=list(show=TRUE)), visualMap= list(min=0,max=10,calculable=TRUE,orient='horizontal',left='center',bottom='15%'), series= list(list(name='Hours', type = 'heatmap', data= hours,label=list(show=TRUE), emphasis=list(itemStyle=list(shadowBlur=10,shadowColor='rgba(0,0,0,0.5)')))) ) #------ Plugin 3D if (interactive()) { data <- list() for(y in 1:dim(volcano)[2]) for(x in 1:dim(volcano)[1]) data <- append(data, list(c(x, y, volcano[x,y]))) ec.init(load= '3D', series= list(list(type= 'surface', data= data)) ) } #------ 3D chart with custom item size if (interactive()) { iris |> group_by(Species) |> mutate(size= log(Petal.Width*10)) |> # add size as 6th column ec.init(load= '3D', xAxis3D= list(name= 'Petal.Length'), yAxis3D= list(name= 'Sepal.Width'), zAxis3D= list(name= 'Sepal.Length'), legend= list(show= TRUE), series.param= list(symbolSize= ec.clmn(6, scale=10)) ) } #------ Surface data equation with JS code if (interactive()) { ec.init(load= '3D', series= list(list( type= 'surface', equation= list( x = list(min= -3, max= 4, step= 0.05), y = list(min= -3, max= 3, step= 0.05), z = htmlwidgets::JS("function (x, y) { return Math.sin(x * x + y * y) * x / Math.PI; }") ) ))) } #------ Surface with data from a data.frame if (interactive()) { data <- expand.grid( x = seq(0, 2, by = 0.1), y = seq(0, 1, by = 0.1) ) |> mutate(z = x * (y ^ 2)) |> select(x,y,z) ec.init(load= '3D', series= list(list( type= 'surface', data= ec.data(data, 'values'))) ) } #------ Band series with customization dats <- as.data.frame(EuStockMarkets) |> mutate(day= 1:n()) |> # first column ('day') becomes X-axis by default dplyr::relocate(day) |> slice_head(n= 100) # 1. with unnamed data bands <- ecr.band(dats, 'DAX','FTSE', name= 'Ftse-Dax', areaStyle= list(color='pink')) ec.init(load= 'custom', tooltip= list(trigger= 'axis'), legend= list(show= TRUE), xAxis= list(type= 'category'), dataZoom= list(type= 'slider', end= 50), series = append( bands, list(list(type= 'line', name= 'CAC', color= 'red', symbolSize= 1, data= ec.data(dats |> select(day,CAC), 'values') )) ) ) # 2. with a dataset # dats |> ec.init(load= 'custom', ... # + replace data=... with encode= list(x='day', y='CAC') #------ Error Bars on grouped data df <- mtcars |> group_by(cyl,gear) |> summarise(yy= round(mean(mpg),2)) |> mutate(low= round(yy-cyl*runif(1),2), high= round(yy+cyl*runif(1),2)) df |> ec.init(load='custom', ctype='bar', xAxis= list(type='category'), tooltip= list(show=TRUE)) |> ecr.ebars( # name = 'eb', # cannot have own name in grouped series encode= list(x='gear', y=c('yy','low','high')), tooltip = list(formatter=ec.clmn('high <b>%@</b><br>low <b>%@</b>', 'high','low'))) #------ Timeline animation and use of ec.upd for readability Orange |> group_by(age) |> ec.init( xAxis= list(type= 'category', name= 'tree'), yAxis= list(max= max(Orange$circumference)), timeline= list(autoPlay= TRUE), series.param= list(type= 'bar', encode= list(x='Tree', y='circumference')) ) |> ec.upd({ options <- lapply(options, function(o) { vv <- o$series[[1]]$datasetIndex +1; vv <- dataset[[vv]]$transform$config[["="]] o$title$text <- paste('age',vv,'days'); o }) }) #------ Timeline with pies df <- data.frame( group= c(1,1,1,1,2,2,2,2), type= c("type1","type1","type2","type2","type1","type1","type2","type2"), value= c(5,2,2,1,4,3,1,4), label= c("name1","name2","name3","name4","name1","name2","name3","name4"), color= c("blue","purple","red","gold","blue","purple","red","gold") ) df |> group_by(group) |> ec.init( preset= FALSE, legend= list(selectedMode= "single"), timeline= list(show=TRUE), series.param= list(type= 'pie', roseType= 'radius', itemStyle= list(color=ec.clmn(5)), label= list(formatter=ec.clmn(4)), encode=list(value='value', itemName='type')) ) #------ Boxplot without grouping ds <- mtcars |> select(cyl, drat) |> ec.data(format='boxplot', jitter=0.1, #layout= 'h', symbolSize=5, itemStyle=list(opacity=0.9), emphasis= list(itemStyle= list( color= 'chartreuse', borderWidth=4, opacity=1)) ) ec.init( #colors= heat.colors(length(mcyl)), legend= list(show= TRUE), tooltip= list(show=TRUE), dataset= ds$dataset, series= ds$series, xAxis= ds$xAxis, yAxis= ds$yAxis, series.param= list(color= 'LightGrey', itemStyle= list(color='DimGray')) ) |> ec.theme('dark-mushroom') #------ Boxplot with grouping ds = airquality |> mutate(Day=round(Day/10)) |> dplyr::relocate(Day,Wind,Month) |> group_by(Month) |> ec.data(format='boxplot', jitter=0.1, layout= 'h') ec.init( dataset= ds$dataset, series= ds$series,xAxis= ds$xAxis, yAxis= ds$yAxis, legend= list(show= TRUE), tooltip= list(show=TRUE) ) #------ ecStat plugin: dataset transform to regression line # presets for xAxis,yAxis,dataset and series are used data.frame(x= 1:10, y= sample(1:100,10)) |> ec.init(load= 'ecStat', js= c('echarts.registerTransform(ecStat.transform.regression)','','')) |> ec.upd({ dataset[[2]] <- list( transform= list(type= 'ecStat:regression', config= list(method= 'polynomial', order= 3))) series[[2]] <- list( type= 'line', itemStyle=list(color= 'red'), datasetIndex= 1) }) #------ ECharts: dataset, transform and sort datset <- list( list(source=list( list('name', 'age', 'profession', 'score', 'date'), list('Hannah Krause', 41, 'Engineer', 314, '2011-02-12'), list('Zhao Qian', 20, 'Teacher', 351, '2011-03-01'), list('Jasmin Krause', 52, 'Musician', 287, '2011-02-14'), list('Li Lei', 37, 'Teacher', 219, '2011-02-18'), list('Karle Neumann', 25, 'Engineer', 253, '2011-04-02'), list('Adrian Groß', 19, 'Teacher', NULL, '2011-01-16'), list('Mia Neumann', 71, 'Engineer', 165, '2011-03-19'), list('Böhm Fuchs', 36, 'Musician', 318, '2011-02-24'), list('Han Meimei', 67, 'Engineer', 366, '2011-03-12'))), list(transform = list(type= 'sort', config=list( list(dimension='profession', order='desc'), list(dimension='score', order='desc')) ))) ec.init( title= list( text= 'Data transform, multiple-sort bar', subtext= 'JS source', sublink= paste0('https://echarts.apache.org/next/examples/en/editor.html', '?c=doc-example/data-transform-multiple-sort-bar'), left= 'center'), tooltip= list(trigger= 'item', axisPointer= list(type= 'shadow')), dataset= datset, xAxis= list(type= 'category', axisLabel= list(interval=0, rotate=30)), yAxis= list(name= 'score'), series= list(list( type= 'bar', label= list(show= TRUE, rotate= 90, position= 'insideBottom', align= 'left', verticalAlign= 'middle'), itemStyle =list(color= htmlwidgets::JS("function (params) { return ({ Engineer: '#5470c6', Teacher: '#91cc75', Musician: '#fac858' })[params.data[2]] }")), encode= list(x= 'name', y= 'score', label= list('profession') ), datasetIndex= 1 )) ) #------ Sunburst # see website for different ways to set hierarchical data # https://helgasoft.github.io/echarty/uc3.html data = list(list(name='Grandpa',children=list(list(name='Uncle Leo',value=15, children=list(list(name='Cousin Jack',value=2), list(name='Cousin Mary',value=5, children=list(list(name='Jackson',value=2))), list(name='Cousin Ben',value=4))), list(name='Father',value=10,children=list(list(name='Me',value=5), list(name='Brother Peter',value=1))))), list(name='Nancy',children=list( list(name='Uncle Nike',children=list(list(name='Cousin Betty',value=1), list(name='Cousin Jenny',value=2)))))) ec.init( preset= FALSE, series= list(list(type= 'sunburst', data= data, radius= list(0, '90%'), label= list(rotate='radial') )) ) #------ Gauge ec.init(preset= FALSE, series= list(list( type = 'gauge', max = 160, min=40, detail = list(formatter='\U1F9E0={value}'), data = list(list(value=85, name='IQ test')) )) ) #------ Custom gauge with animation jcode <- "setInterval(function () { opts.series[0].data[0].value = (Math.random() * 100).toFixed(2) - 0; chart.setOption(opts, true);}, 2000);" ec.init(preset= FALSE, js= jcode, series= list(list( type= 'gauge', axisLine= list(lineStyle=list(width=30, color= list(c(0.3, '#67e0e3'),c(0.7, '#37a2da'),c(1, '#fd666d')))), pointer= list(itemStyle=list(color='auto')), axisTick= list(distance=-30,length=8, lineStyle=list(color='#fff',width=2)), splitLine= list(distance=-30,length=30, lineStyle=list(color='#fff',width=4)), axisLabel= list(color='auto',distance=40,fontSize=20), detail= list(valueAnimation=TRUE, formatter='{value} km/h',color='auto'), data= list(list(value=70)) ))) #------ Sankey and graph plots sankey <- data.frame( name = c("a","b", "c", "d", "e"), source = c("a", "b", "c", "d", "c"), target = c("b", "c", "d", "e", "e"), value = c(5, 6, 2, 8, 13) ) data <- ec.data(sankey, 'names') ec.init(preset= FALSE, series= list(list( type= 'sankey', data= data, edges= data )) ) # graph plot with same data --------------- ec.init(preset= FALSE, title= list(text= 'Graph'), tooltip= list(show= TRUE), series= list(list( type= 'graph', layout= 'force', # try 'circular' too data= lapply(data, function(x) list(name= x$node, tooltip= list(show=FALSE))), edges= lapply(data, function(x) { x$lineStyle <- list(width=x$value); x }), emphasis= list(focus= 'adjacency', label= list(position= 'right', show=TRUE)), label= list(show=TRUE), roam= TRUE, zoom= 4, tooltip= list(textStyle= list(color= 'blue')), lineStyle= list(curveness= 0.3) )) ) #------ group connect main <- mtcars |> ec.init(height= 200, legend= list(show=FALSE), tooltip= list(axisPointer= list(axis='x')), series.param= list(name= "this legend is shared")) main$x$group <- 'group1' # same group name for all charts main$x$connect <- 'group1' q1 <- main |> ec.upd({ series[[1]]$encode <- list(y='hp'); yAxis$name <- 'hp' legend <- list(show=TRUE) # show first legend to share }) q2 <- main |> ec.upd({ series[[1]]$encode <- list(y='wt'); yAxis$name <- 'wt' }) #if (interactive()) { # browsable ec.util(cmd='layout', list(q1,q2), cols=2, title='group connect') #} #------ Javascript execution: ec.init 'js' parameter demo # in single item scenario (js=jcode), execution is same as j3 below if (interactive()) { j1 <- "winvar= 'j1';" # set window variables j2 <- "opts.title.text= 'changed';" # opts exposed j3 <- "ww= chart.getWidth(); alert('width:'+ww);" # chart exposed ec.init(js= c(j1, j2, j3), title= list(text= 'Title'), series.param= list(name='sname'), legend= list(formatter= ec.clmn("function(name) { return name +' - '+ this.winvar; }")) ) } #------ echarty Javascript built-in functions jtgl <- "() => { ch1 = ec_chart(echwid); // takes the auto-assigned id //ch1 = ec_chart('myTree'); // manual id is OK too opts = ch1.getOption(); //opts = ec_option(echwid); // for reading, without setOption opts.series[0].orient= opts.series[0].orient=='TB' ? 'LR':'TB'; ch1.setOption(opts); }" dbut <- ec.util(cmd='button', text='toggle', js=jtgl) data <- list(list(name='root', children=list(list(name='A',value=1),list(name='B',value=3)))) ec.init( # elementId='myTree', series.param= list(type='tree', data=data), graphic= list(dbut) ) #------ Events in Shiny ---------- if (interactive()) { library(shiny); library(dplyr); library(echarty) ui <- fluidPage(ecs.output('plot'), textOutput('out1') ) server <- function(input, output, session) { output$plot <- ecs.render({ p <- mtcars |> group_by(cyl) |> ec.init(dataZoom= list(type= 'inside')) p$x$on <- list( # event(s) with Javascript handler list(event= 'legendselectchanged', handler= htmlwidgets::JS("(e) => Shiny.setInputValue('lgnd', 'legend:'+e.name);")) ) p$x$capture <- 'datazoom' p }) observeEvent(input$plot_datazoom, { # captured event output$out1 <- renderText({ paste('Zoom.start:',input$plot_datazoom$batch[[1]]$start,'%') }) }) observeEvent(input$plot_mouseover, { # built-in event v <- input$plot_mouseover output$out1 <- renderText({ paste('s:',v$seriesName,'d:',v$data[v$dataIndex+1]) }) }) observeEvent(input$lgnd, { # reactive response to on:legend event output$out1 <- renderText({ input$lgnd }) }) } shinyApp(ui, server) } #------------- Shiny interactive charts demo --------------- # run command: demo(eshiny) # donttest
library(dplyr); library(echarty) #------ Basic scatter chart, instant display cars |> ec.init() #------ Same chart, change theme and save for further processing p <- cars |> ec.init() |> ec.theme('dark') p #------ parallel chart ToothGrowth |> ec.init(ctype= 'parallel') #------ JSON back and forth tmp <- cars |> ec.init() tmp json <- tmp |> ec.inspect() ec.fromJson(json) |> ec.theme("dark") #------ Data grouping iris |> mutate(Species= as.character(Species)) |> group_by(Species) |> ec.init() # by non-factor column Orange |> group_by(Tree) |> ec.init( series.param= list(symbolSize= 10, encode= list(x='age', y='circumference')) ) #------ Polar bar chart cnt <- 5; set.seed(222) data.frame( x = seq(cnt), y = round(rnorm(cnt, 10, 3)), z = round(rnorm(cnt, 11, 2)), colr = rainbow(cnt) ) |> ec.init( preset= FALSE, polar= list(radius= '90%'), radiusAxis= list(max= 'dataMax'), angleAxis= list(type= "category"), series= list( list(type= "bar", coordinateSystem= "polar", itemStyle= list(color= ec.clmn('colr')), label= list(show= TRUE, position= "middle", formatter= "y={@[1]}") ), list(type= 'scatter', coordinateSystem= "polar", itemStyle= list(color= 'black'), encode= list(angle='x', radius='z')) ) ) #------ Area chart mtcars |> dplyr::relocate(wt,mpg) |> arrange(wt) |> group_by(cyl) |> ec.init(ctype= 'line', series.param= list(areaStyle= list(show=TRUE)) ) #------ Plugin leaflet quakes |> dplyr::relocate('long') |> # set order to long,lat mutate(size= exp(mag)/20) |> head(100) |> # add accented size ec.init(load= 'leaflet', tooltip= list(formatter= ec.clmn('magnitude %@', 'mag')), legend= list(show=TRUE), series.param= list(name= 'quakes', symbolSize= ec.clmn(6, scale=2)) # 6th column is size ) #------ Plugin 'world' with visualMap set.seed(333) cns <- data.frame( val = runif(3, 1, 100), dim = runif(3, 1, 100), nam = c('Brazil','China','India') ) cns |> group_by(nam) |> ec.init(load= 'world', timeline= list(s=TRUE), series.param= list(type='map', encode=list(value='val', name='nam')), toolbox= list(feature= list(restore= list())), visualMap= list(calculable=TRUE, dimension=2) ) #------ Plugin 'world' with lines and color coding if (interactive()) { flights <- NULL flights <- try(read.csv(paste0('https://raw.githubusercontent.com/plotly/datasets/master/', '2011_february_aa_flight_paths.csv')), silent = TRUE) if (!is.null(flights)) { tmp <- data.frame(airport1 = unique(head(flights,10)$airport1), color = c("#387e78","#eeb422","#d9534f",'magenta')) tmp <- head(flights,10) |> inner_join(tmp) # add color by airport ec.init(load= 'world', geo= list(center= c(mean(flights$start_lon), mean(flights$start_lat)), zoom= 7, map='world' ), series= list(list( type= 'lines', coordinateSystem= 'geo', data= lapply(ec.data(tmp, 'names'), function(x) list(coords = list(c(x$start_lon,x$start_lat), c(x$end_lon,x$end_lat)), colr = x$color) ), lineStyle= list(curveness=0.3, width=3, color=ec.clmn('colr')) )) ) } } #------ registerMap JSON # registerMap supports also maps in SVG format, see website gallery if (interactive()) { json <- jsonlite::read_json("https://echarts.apache.org/examples/data/asset/geo/USA.json") dusa <- USArrests dusa$states <- row.names(dusa) p <- ec.init(preset= FALSE, series= list(list(type= 'map', map= 'USA', roam= TRUE, zoom= 3, left= -100, top= -30, data= lapply(ec.data(dusa, 'names'), function(x) list(name=x$states, value=x$UrbanPop)) )), visualMap= list(type='continuous', calculable=TRUE, inRange= list(color = rainbow(8)), min= min(dusa$UrbanPop), max= max(dusa$UrbanPop)) ) p$x$registerMap <- list(list(mapName= 'USA', geoJSON= json)) p } #------ locale mo <- seq.Date(Sys.Date() - 444, Sys.Date(), by= "month") df <- data.frame(date= mo, val= runif(length(mo), 1, 10)) p <- df |> ec.init(title= list(text= 'locale test')) p$x$locale <- 'ZH' p$x$renderer <- 'svg' p #------ Pie isl <- data.frame(name=names(islands), value=islands) |> filter(value>100) |> arrange(value) ec.init( preset= FALSE, title= list(text = "Landmasses over 60,000 mi\u00B2", left = 'center'), tooltip= list(trigger='item'), #, formatter= ec.clmn()), series= list(list(type= 'pie', radius= '50%', data= ec.data(isl, 'names'), name='mi\u00B2')) ) #------ Liquidfill plugin if (interactive()) { ec.init(load= 'liquid', preset=FALSE, series= list(list( type='liquidFill', data=c(0.66, 0.5, 0.4, 0.3), waveAnimation= FALSE, animationDuration=0, animationDurationUpdate=0)) ) } #------ Heatmap times <- c(5,1,0,0,0,0,0,0,0,0,0,2,4,1,1,3,4,6,4,4,3,3,2,5,7,0,0,0,0,0, 0,0,0,0,5,2,2,6,9,11,6,7,8,12,5,5,7,2,1,1,0,0,0,0,0,0,0,0,3,2, 1,9,8,10,6,5,5,5,7,4,2,4,7,3,0,0,0,0,0,0,1,0,5,4,7,14,13,12,9,5, 5,10,6,4,4,1,1,3,0,0,0,1,0,0,0,2,4,4,2,4,4,14,12,1,8,5,3,7,3,0, 2,1,0,3,0,0,0,0,2,0,4,1,5,10,5,7,11,6,0,5,3,4,2,0,1,0,0,0,0,0, 0,0,0,0,1,0,2,1,3,4,0,0,0,0,1,2,2,6) df <- NULL; n <- 1; for(i in 0:6) { df <- rbind(df, data.frame(0:23, rep(i,24), times[n:(n+23)])); n<-n+24 } hours <- ec.data(df); hours <- hours[-1] # remove columns row times <- c('12a',paste0(1:11,'a'),'12p',paste0(1:11,'p')) days <- c('Saturday','Friday','Thursday','Wednesday','Tuesday','Monday','Sunday') ec.init(preset= FALSE, title= list(text='Punch Card Heatmap'), tooltip= list(position='top'),grid=list(height='50%',top='10%'), xAxis= list(type='category', data=times, splitArea=list(show=TRUE)), yAxis= list(type='category', data=days, splitArea=list(show=TRUE)), visualMap= list(min=0,max=10,calculable=TRUE,orient='horizontal',left='center',bottom='15%'), series= list(list(name='Hours', type = 'heatmap', data= hours,label=list(show=TRUE), emphasis=list(itemStyle=list(shadowBlur=10,shadowColor='rgba(0,0,0,0.5)')))) ) #------ Plugin 3D if (interactive()) { data <- list() for(y in 1:dim(volcano)[2]) for(x in 1:dim(volcano)[1]) data <- append(data, list(c(x, y, volcano[x,y]))) ec.init(load= '3D', series= list(list(type= 'surface', data= data)) ) } #------ 3D chart with custom item size if (interactive()) { iris |> group_by(Species) |> mutate(size= log(Petal.Width*10)) |> # add size as 6th column ec.init(load= '3D', xAxis3D= list(name= 'Petal.Length'), yAxis3D= list(name= 'Sepal.Width'), zAxis3D= list(name= 'Sepal.Length'), legend= list(show= TRUE), series.param= list(symbolSize= ec.clmn(6, scale=10)) ) } #------ Surface data equation with JS code if (interactive()) { ec.init(load= '3D', series= list(list( type= 'surface', equation= list( x = list(min= -3, max= 4, step= 0.05), y = list(min= -3, max= 3, step= 0.05), z = htmlwidgets::JS("function (x, y) { return Math.sin(x * x + y * y) * x / Math.PI; }") ) ))) } #------ Surface with data from a data.frame if (interactive()) { data <- expand.grid( x = seq(0, 2, by = 0.1), y = seq(0, 1, by = 0.1) ) |> mutate(z = x * (y ^ 2)) |> select(x,y,z) ec.init(load= '3D', series= list(list( type= 'surface', data= ec.data(data, 'values'))) ) } #------ Band series with customization dats <- as.data.frame(EuStockMarkets) |> mutate(day= 1:n()) |> # first column ('day') becomes X-axis by default dplyr::relocate(day) |> slice_head(n= 100) # 1. with unnamed data bands <- ecr.band(dats, 'DAX','FTSE', name= 'Ftse-Dax', areaStyle= list(color='pink')) ec.init(load= 'custom', tooltip= list(trigger= 'axis'), legend= list(show= TRUE), xAxis= list(type= 'category'), dataZoom= list(type= 'slider', end= 50), series = append( bands, list(list(type= 'line', name= 'CAC', color= 'red', symbolSize= 1, data= ec.data(dats |> select(day,CAC), 'values') )) ) ) # 2. with a dataset # dats |> ec.init(load= 'custom', ... # + replace data=... with encode= list(x='day', y='CAC') #------ Error Bars on grouped data df <- mtcars |> group_by(cyl,gear) |> summarise(yy= round(mean(mpg),2)) |> mutate(low= round(yy-cyl*runif(1),2), high= round(yy+cyl*runif(1),2)) df |> ec.init(load='custom', ctype='bar', xAxis= list(type='category'), tooltip= list(show=TRUE)) |> ecr.ebars( # name = 'eb', # cannot have own name in grouped series encode= list(x='gear', y=c('yy','low','high')), tooltip = list(formatter=ec.clmn('high <b>%@</b><br>low <b>%@</b>', 'high','low'))) #------ Timeline animation and use of ec.upd for readability Orange |> group_by(age) |> ec.init( xAxis= list(type= 'category', name= 'tree'), yAxis= list(max= max(Orange$circumference)), timeline= list(autoPlay= TRUE), series.param= list(type= 'bar', encode= list(x='Tree', y='circumference')) ) |> ec.upd({ options <- lapply(options, function(o) { vv <- o$series[[1]]$datasetIndex +1; vv <- dataset[[vv]]$transform$config[["="]] o$title$text <- paste('age',vv,'days'); o }) }) #------ Timeline with pies df <- data.frame( group= c(1,1,1,1,2,2,2,2), type= c("type1","type1","type2","type2","type1","type1","type2","type2"), value= c(5,2,2,1,4,3,1,4), label= c("name1","name2","name3","name4","name1","name2","name3","name4"), color= c("blue","purple","red","gold","blue","purple","red","gold") ) df |> group_by(group) |> ec.init( preset= FALSE, legend= list(selectedMode= "single"), timeline= list(show=TRUE), series.param= list(type= 'pie', roseType= 'radius', itemStyle= list(color=ec.clmn(5)), label= list(formatter=ec.clmn(4)), encode=list(value='value', itemName='type')) ) #------ Boxplot without grouping ds <- mtcars |> select(cyl, drat) |> ec.data(format='boxplot', jitter=0.1, #layout= 'h', symbolSize=5, itemStyle=list(opacity=0.9), emphasis= list(itemStyle= list( color= 'chartreuse', borderWidth=4, opacity=1)) ) ec.init( #colors= heat.colors(length(mcyl)), legend= list(show= TRUE), tooltip= list(show=TRUE), dataset= ds$dataset, series= ds$series, xAxis= ds$xAxis, yAxis= ds$yAxis, series.param= list(color= 'LightGrey', itemStyle= list(color='DimGray')) ) |> ec.theme('dark-mushroom') #------ Boxplot with grouping ds = airquality |> mutate(Day=round(Day/10)) |> dplyr::relocate(Day,Wind,Month) |> group_by(Month) |> ec.data(format='boxplot', jitter=0.1, layout= 'h') ec.init( dataset= ds$dataset, series= ds$series,xAxis= ds$xAxis, yAxis= ds$yAxis, legend= list(show= TRUE), tooltip= list(show=TRUE) ) #------ ecStat plugin: dataset transform to regression line # presets for xAxis,yAxis,dataset and series are used data.frame(x= 1:10, y= sample(1:100,10)) |> ec.init(load= 'ecStat', js= c('echarts.registerTransform(ecStat.transform.regression)','','')) |> ec.upd({ dataset[[2]] <- list( transform= list(type= 'ecStat:regression', config= list(method= 'polynomial', order= 3))) series[[2]] <- list( type= 'line', itemStyle=list(color= 'red'), datasetIndex= 1) }) #------ ECharts: dataset, transform and sort datset <- list( list(source=list( list('name', 'age', 'profession', 'score', 'date'), list('Hannah Krause', 41, 'Engineer', 314, '2011-02-12'), list('Zhao Qian', 20, 'Teacher', 351, '2011-03-01'), list('Jasmin Krause', 52, 'Musician', 287, '2011-02-14'), list('Li Lei', 37, 'Teacher', 219, '2011-02-18'), list('Karle Neumann', 25, 'Engineer', 253, '2011-04-02'), list('Adrian Groß', 19, 'Teacher', NULL, '2011-01-16'), list('Mia Neumann', 71, 'Engineer', 165, '2011-03-19'), list('Böhm Fuchs', 36, 'Musician', 318, '2011-02-24'), list('Han Meimei', 67, 'Engineer', 366, '2011-03-12'))), list(transform = list(type= 'sort', config=list( list(dimension='profession', order='desc'), list(dimension='score', order='desc')) ))) ec.init( title= list( text= 'Data transform, multiple-sort bar', subtext= 'JS source', sublink= paste0('https://echarts.apache.org/next/examples/en/editor.html', '?c=doc-example/data-transform-multiple-sort-bar'), left= 'center'), tooltip= list(trigger= 'item', axisPointer= list(type= 'shadow')), dataset= datset, xAxis= list(type= 'category', axisLabel= list(interval=0, rotate=30)), yAxis= list(name= 'score'), series= list(list( type= 'bar', label= list(show= TRUE, rotate= 90, position= 'insideBottom', align= 'left', verticalAlign= 'middle'), itemStyle =list(color= htmlwidgets::JS("function (params) { return ({ Engineer: '#5470c6', Teacher: '#91cc75', Musician: '#fac858' })[params.data[2]] }")), encode= list(x= 'name', y= 'score', label= list('profession') ), datasetIndex= 1 )) ) #------ Sunburst # see website for different ways to set hierarchical data # https://helgasoft.github.io/echarty/uc3.html data = list(list(name='Grandpa',children=list(list(name='Uncle Leo',value=15, children=list(list(name='Cousin Jack',value=2), list(name='Cousin Mary',value=5, children=list(list(name='Jackson',value=2))), list(name='Cousin Ben',value=4))), list(name='Father',value=10,children=list(list(name='Me',value=5), list(name='Brother Peter',value=1))))), list(name='Nancy',children=list( list(name='Uncle Nike',children=list(list(name='Cousin Betty',value=1), list(name='Cousin Jenny',value=2)))))) ec.init( preset= FALSE, series= list(list(type= 'sunburst', data= data, radius= list(0, '90%'), label= list(rotate='radial') )) ) #------ Gauge ec.init(preset= FALSE, series= list(list( type = 'gauge', max = 160, min=40, detail = list(formatter='\U1F9E0={value}'), data = list(list(value=85, name='IQ test')) )) ) #------ Custom gauge with animation jcode <- "setInterval(function () { opts.series[0].data[0].value = (Math.random() * 100).toFixed(2) - 0; chart.setOption(opts, true);}, 2000);" ec.init(preset= FALSE, js= jcode, series= list(list( type= 'gauge', axisLine= list(lineStyle=list(width=30, color= list(c(0.3, '#67e0e3'),c(0.7, '#37a2da'),c(1, '#fd666d')))), pointer= list(itemStyle=list(color='auto')), axisTick= list(distance=-30,length=8, lineStyle=list(color='#fff',width=2)), splitLine= list(distance=-30,length=30, lineStyle=list(color='#fff',width=4)), axisLabel= list(color='auto',distance=40,fontSize=20), detail= list(valueAnimation=TRUE, formatter='{value} km/h',color='auto'), data= list(list(value=70)) ))) #------ Sankey and graph plots sankey <- data.frame( name = c("a","b", "c", "d", "e"), source = c("a", "b", "c", "d", "c"), target = c("b", "c", "d", "e", "e"), value = c(5, 6, 2, 8, 13) ) data <- ec.data(sankey, 'names') ec.init(preset= FALSE, series= list(list( type= 'sankey', data= data, edges= data )) ) # graph plot with same data --------------- ec.init(preset= FALSE, title= list(text= 'Graph'), tooltip= list(show= TRUE), series= list(list( type= 'graph', layout= 'force', # try 'circular' too data= lapply(data, function(x) list(name= x$node, tooltip= list(show=FALSE))), edges= lapply(data, function(x) { x$lineStyle <- list(width=x$value); x }), emphasis= list(focus= 'adjacency', label= list(position= 'right', show=TRUE)), label= list(show=TRUE), roam= TRUE, zoom= 4, tooltip= list(textStyle= list(color= 'blue')), lineStyle= list(curveness= 0.3) )) ) #------ group connect main <- mtcars |> ec.init(height= 200, legend= list(show=FALSE), tooltip= list(axisPointer= list(axis='x')), series.param= list(name= "this legend is shared")) main$x$group <- 'group1' # same group name for all charts main$x$connect <- 'group1' q1 <- main |> ec.upd({ series[[1]]$encode <- list(y='hp'); yAxis$name <- 'hp' legend <- list(show=TRUE) # show first legend to share }) q2 <- main |> ec.upd({ series[[1]]$encode <- list(y='wt'); yAxis$name <- 'wt' }) #if (interactive()) { # browsable ec.util(cmd='layout', list(q1,q2), cols=2, title='group connect') #} #------ Javascript execution: ec.init 'js' parameter demo # in single item scenario (js=jcode), execution is same as j3 below if (interactive()) { j1 <- "winvar= 'j1';" # set window variables j2 <- "opts.title.text= 'changed';" # opts exposed j3 <- "ww= chart.getWidth(); alert('width:'+ww);" # chart exposed ec.init(js= c(j1, j2, j3), title= list(text= 'Title'), series.param= list(name='sname'), legend= list(formatter= ec.clmn("function(name) { return name +' - '+ this.winvar; }")) ) } #------ echarty Javascript built-in functions jtgl <- "() => { ch1 = ec_chart(echwid); // takes the auto-assigned id //ch1 = ec_chart('myTree'); // manual id is OK too opts = ch1.getOption(); //opts = ec_option(echwid); // for reading, without setOption opts.series[0].orient= opts.series[0].orient=='TB' ? 'LR':'TB'; ch1.setOption(opts); }" dbut <- ec.util(cmd='button', text='toggle', js=jtgl) data <- list(list(name='root', children=list(list(name='A',value=1),list(name='B',value=3)))) ec.init( # elementId='myTree', series.param= list(type='tree', data=data), graphic= list(dbut) ) #------ Events in Shiny ---------- if (interactive()) { library(shiny); library(dplyr); library(echarty) ui <- fluidPage(ecs.output('plot'), textOutput('out1') ) server <- function(input, output, session) { output$plot <- ecs.render({ p <- mtcars |> group_by(cyl) |> ec.init(dataZoom= list(type= 'inside')) p$x$on <- list( # event(s) with Javascript handler list(event= 'legendselectchanged', handler= htmlwidgets::JS("(e) => Shiny.setInputValue('lgnd', 'legend:'+e.name);")) ) p$x$capture <- 'datazoom' p }) observeEvent(input$plot_datazoom, { # captured event output$out1 <- renderText({ paste('Zoom.start:',input$plot_datazoom$batch[[1]]$start,'%') }) }) observeEvent(input$plot_mouseover, { # built-in event v <- input$plot_mouseover output$out1 <- renderText({ paste('s:',v$seriesName,'d:',v$data[v$dataIndex+1]) }) }) observeEvent(input$lgnd, { # reactive response to on:legend event output$out1 <- renderText({ input$lgnd }) }) } shinyApp(ui, server) } #------------- Shiny interactive charts demo --------------- # run command: demo(eshiny) # donttest
Convert JSON string or file to chart
ec.fromJson(txt, ...)
ec.fromJson(txt, ...)
txt |
Could be one of the following: |
... |
Any attributes to pass to internal ec.init when txt is options only |
txt could be either a list of options (x$opts) to be set by setOption,
OR an entire htmlwidget generated thru ec.inspect with target='full'.
The latter imports all JavaScript functions defined by the user.
An echarty widget.
txt <- '{ "xAxis": { "data": ["Mon", "Tue", "Wed"]}, "yAxis": { }, "series": { "type": "line", "data": [150, 230, 224] } }' ec.fromJson(txt) # text json # outFile <- 'c:/temp/cars.json' # cars |> ec.init() |> ec.inspect(target='full', file=outFile) # ec.fromJson(file(outFile, 'rb')) # ec.fromJson(url('http://localhost/echarty/cars.json')) ec.fromJson('https://helgasoft.github.io/echarty/test/pfull.json')
txt <- '{ "xAxis": { "data": ["Mon", "Tue", "Wed"]}, "yAxis": { }, "series": { "type": "line", "data": [150, 230, 224] } }' ec.fromJson(txt) # text json # outFile <- 'c:/temp/cars.json' # cars |> ec.init() |> ec.inspect(target='full', file=outFile) # ec.fromJson(file(outFile, 'rb')) # ec.fromJson(url('http://localhost/echarty/cars.json')) ec.fromJson('https://helgasoft.github.io/echarty/test/pfull.json')
Required to build a chart. In most cases this will be the only command necessary.
ec.init( df = NULL, preset = TRUE, ctype = "scatter", ..., series.param = NULL, tl.series = NULL, width = NULL, height = NULL )
ec.init( df = NULL, preset = TRUE, ctype = "scatter", ..., series.param = NULL, tl.series = NULL, width = NULL, height = NULL )
df |
Optional data.frame to be preset as dataset, default NULL |
preset |
Boolean (default TRUE). Build preset attributes like dataset, series, xAxis, yAxis, etc. |
ctype |
Chart type, default is 'scatter'. Could be set in series.param instead. |
... |
Optional widget attributes. See Details. |
series.param |
Additional attributes for single preset series, default is NULL. |
tl.series |
Deprecated, use timeline and series.param instead. |
width , height
|
Optional valid CSS unit (like |
Command ec.init creates a widget with createWidget, then adds some ECharts features to it.
Numerical indexes for series,visualMap,etc. are R-counted (1,2...)
Presets:
When data.frame df is present, a dataset is preset.
When df is grouped and ctype is not NULL, more datasets with legend and series are also preset.
Plugin '3D' (load='3D') is required for GL series like scatterGL, linesGL, etc.
Plugins 'leaflet' and 'world' preset center to the mean of all coordinates from df.
Users can delete or overwrite any presets as needed.
Widget attributes:
Optional echarty widget attributes include:
elementId - Id of the widget, default is NULL(auto-generated)
load - name(s) of plugin(s) to load. A character vector or comma-delimited string. default NULL.
ask - prompt user before downloading plugins when load is present, FALSE by default
js - single string or a vector with JavaScript expressions to evaluate.
single: exposed chart object (most common)
vector:
see demo code in ec.examples
First expression evaluated before initialization, exposed object window
Second is evaluated with exposed object opts.
Third is evaluated with exposed chart object after opts set.
renderer - 'canvas'(default) or 'svg'
locale - 'EN'(default) or 'ZH'. Use predefined or custom like so.
useDirtyRect - enable dirty rectangle rendering or not, FALSE by default, see here
Built-in plugins:
leaflet - Leaflet maps with customizable tiles, see source
world - world map with country boundaries, see source
lottie - support for lotties
ecStat - statistical tools, seeecharts-stat
custom - renderers for ecr.band and ecr.ebars
Plugins with one-time installation:
3D - support for 3D charts and WebGL acceleration, see source and docs
This plugin is auto-loaded when 3D/GL axes/series are detected.
liquid - liquid fill, see source
gmodular - graph modularity, see source
wordcloud - cloud of words, see source
or install your own third-party plugins.
Crosstalk:
Parameter df should be of type SharedData, see more info.
Optional parameter xtKey: unique ID column name of data frame df. Must be same as key parameter used in SharedData$new(). If missing, a new column XkeyX will be appended to df.
Enabling crosstalk will also generate an additional dataset called Xtalk and bind the first series to it.
Timeline:
Defined by series.param for the options series and a timeline list for the actual control.
A grouped df is required, each group providing data for one option serie.
Timeline data and options will be preset for the chart.
Another preset is encode(x=1,y=2,z=3), which are the first 3 columns of df. Parameter z is ignored in 2D. See Details below.
Optional attribute groupBy, a df column name, can create series groups inside each timeline option.
Timeline cannot be used for hierarchical charts like graph,tree,treemap,sankey. Chart options/timeline have to be built directly, see example.
Encode
A series attribute to define which columns to use for the axes, depending on chart type and coordinate system:
set x and y for coordinateSystem cartesian2d
set lng and lat for coordinateSystem geo and scatter series
set value and name for coordinateSystem geo and map series
set radius and angle for coordinateSystem polar
set value and itemName for pie chart
Example: encode(x='col3', y='col1')
binds xAxis to df column 'col3'.
A widget to plot, or to save and expand with more features.
# basic scatter chart from a data.frame, using presets cars |> ec.init() # grouping, tooltips, formatting iris |> dplyr::group_by(Species) |> ec.init( # init with presets tooltip= list(show= TRUE), series.param= list( symbolSize= ec.clmn('Petal.Width', scale=7), tooltip= list(formatter= ec.clmn('Petal.Width: %@', 'Petal.Width')) ) ) data.frame(n=1:5) |> dplyr::group_by(n) |> ec.init( timeline= list(show=TRUE, autoPlay=TRUE), series.param= list(type='gauge', max=5) )
# basic scatter chart from a data.frame, using presets cars |> ec.init() # grouping, tooltips, formatting iris |> dplyr::group_by(Species) |> ec.init( # init with presets tooltip= list(show= TRUE), series.param= list( symbolSize= ec.clmn('Petal.Width', scale=7), tooltip= list(formatter= ec.clmn('Petal.Width: %@', 'Petal.Width')) ) ) data.frame(n=1:5) |> dplyr::group_by(n) |> ec.init( timeline= list(show=TRUE, autoPlay=TRUE), series.param= list(type='gauge', max=5) )
Convert chart to JSON string
ec.inspect(wt, target = "opts", ...)
ec.inspect(wt, target = "opts", ...)
wt |
An |
target |
type of resulting value: |
... |
Additional attributes to pass to toJSON |
Must be invoked or chained as last command.
target='full' will export all JavaScript custom code, ready to be used on import.
See also ec.fromJson.
A JSON string, except when target
is 'data' - then
a character vector.
# extract JSON json <- cars |> ec.init() |> ec.inspect() json # get from JSON and modify plot ec.fromJson(json) |> ec.theme('macarons')
# extract JSON json <- cars |> ec.init() |> ec.inspect() json # get from JSON and modify plot ec.fromJson(json) |> ec.theme('macarons')
Build 'parallelAxis' for a parallel chart
ec.paxis(dfwt = NULL, cols = NULL, minmax = TRUE, ...)
ec.paxis(dfwt = NULL, cols = NULL, minmax = TRUE, ...)
dfwt |
An echarty widget OR a data.frame(regular or grouped) |
cols |
A string vector with columns names in desired order |
minmax |
Boolean to add max/min limits or not, default TRUE |
... |
Additional attributes for parallelAxis. |
This function could be chained to ec.init or used with a data.frame
A list, see format in parallelAxis.
iris |> dplyr::group_by(Species) |> # chained ec.init(ctype= 'parallel', series.param= list(lineStyle= list(width=3))) |> ec.paxis(cols= c('Petal.Length','Petal.Width','Sepal.Width')) mtcars |> ec.init(ctype= 'parallel', parallelAxis= ec.paxis(mtcars, cols= c('gear','cyl','hp','carb'), nameRotate= 45), series.param= list(smooth= TRUE) )
iris |> dplyr::group_by(Species) |> # chained ec.init(ctype= 'parallel', series.param= list(lineStyle= list(width=3))) |> ec.paxis(cols= c('Petal.Length','Petal.Width','Sepal.Width')) mtcars |> ec.init(ctype= 'parallel', parallelAxis= ec.paxis(mtcars, cols= c('gear','cyl','hp','carb'), nameRotate= 45), series.param= list(smooth= TRUE) )
Install Javascript plugin from URL source
ec.plugjs(wt = NULL, source = NULL, ask = FALSE)
ec.plugjs(wt = NULL, source = NULL, ask = FALSE)
wt |
A widget to add dependency to, see createWidget |
source |
URL or file:// of a Javascript plugin, |
ask |
Boolean, to ask the user to download source if missing. Default is FALSE. |
When source is URL, the plugin file is installed with an optional popup prompt.
When source is a file name (file://xxx.js), it is assumed installed and only a dependency is added.
Called internally by ec.init. It is recommended to use ec.init(load=...) instead of ec.plugjs.
A widget with JS dependency added if successful, otherwise input wt
# import map plugin and display two (lon,lat) locations if (interactive()) { ec.init(preset= FALSE, geo = list(map= 'china-contour', roam= TRUE), series = list(list( type= 'scatter', coordinateSystem= 'geo', symbolSize= 9, itemStyle= list(color= 'red'), data= list(list(value= c(113, 40)), list(value= c(118, 39))) )) ) |> ec.plugjs( paste0('https://raw.githubusercontent.com/apache/echarts/', 'master/test/data/map/js/china-contour.js') ) }
# import map plugin and display two (lon,lat) locations if (interactive()) { ec.init(preset= FALSE, geo = list(map= 'china-contour', roam= TRUE), series = list(list( type= 'scatter', coordinateSystem= 'geo', symbolSize= 9, itemStyle= list(color= 'red'), data= list(list(value= c(113, 40)), list(value= c(118, 39))) )) ) |> ec.plugjs( paste0('https://raw.githubusercontent.com/apache/echarts/', 'master/test/data/map/js/china-contour.js') ) }
Apply a pre-built or custom coded theme to a chart
ec.theme(wt, name = "custom", code = NULL)
ec.theme(wt, name = "custom", code = NULL)
wt |
Required |
name |
Name of existing theme file (without extension), or name of custom theme defined in |
code |
Custom theme as JSON formatted string, default NULL. |
Just a few built-in themes are included in folder inst/themes
.
Their names are dark, gray, jazz, dark-mushroom and macarons.
The entire ECharts theme collection could be found here and files copied if needed.
To create custom themes or view predefined ones, visit this site.
An echarty
widget.
mtcars |> ec.init() |> ec.theme('dark-mushroom') cars |> ec.init() |> ec.theme('mine', code= '{"color": ["green","#eeaa33"], "backgroundColor": "lemonchiffon"}')
mtcars |> ec.init() |> ec.theme('dark-mushroom') cars |> ec.init() |> ec.theme('mine', code= '{"color": ["green","#eeaa33"], "backgroundColor": "lemonchiffon"}')
Chain commands after ec.init to add or update chart items
ec.upd(wt, ...)
ec.upd(wt, ...)
wt |
An echarty widget |
... |
R commands to add/update chart option lists |
ec.upd makes changes to a chart already set by ec.init.
It should be always piped(chained) after ec.init.
All numerical indexes for series,visualMap,etc. are JS-counted starting at 0.
library(dplyr) df <- data.frame(x= 1:30, y= runif(30, 5, 10), cat= sample(LETTERS[1:3],size=30,replace=TRUE)) |> mutate(lwr= y-runif(30, 1, 3), upr= y+runif(30, 2, 4)) band.df <- df |> group_by(cat) |> group_split() df |> group_by(cat) |> ec.init(load='custom', ctype='line', xAxis=list(data=c(0,unique(df$x)), boundaryGap=FALSE) ) |> ec.upd({ for(ii in 1:length(band.df)) # add bands to their respective groups series <- append(series, ecr.band(band.df[[ii]], 'lwr', 'upr', type='stack', smooth=FALSE, name= unique(band.df[[ii]]$cat), areaStyle= list(color=c('blue','green','yellow')[ii])) ) })
library(dplyr) df <- data.frame(x= 1:30, y= runif(30, 5, 10), cat= sample(LETTERS[1:3],size=30,replace=TRUE)) |> mutate(lwr= y-runif(30, 1, 3), upr= y+runif(30, 2, 4)) band.df <- df |> group_by(cat) |> group_split() df |> group_by(cat) |> ec.init(load='custom', ctype='line', xAxis=list(data=c(0,unique(df$x)), boundaryGap=FALSE) ) |> ec.upd({ for(ii in 1:length(band.df)) # add bands to their respective groups series <- append(series, ecr.band(band.df[[ii]], 'lwr', 'upr', type='stack', smooth=FALSE, name= unique(band.df[[ii]]$cat), areaStyle= list(color=c('blue','green','yellow')[ii])) ) })
tabset, table layout, support for GIS shapefiles through library 'sf'
ec.util(..., cmd = "sf.series", js = NULL)
ec.util(..., cmd = "sf.series", js = NULL)
... |
Optional parameters for the command |
cmd |
utility command, see Details |
js |
optional JavaScript function, default is NULL. |
cmd = 'sf.series'
Build leaflet or geo map series from shapefiles.
Supported types: POINT, MULTIPOINT, LINESTRING, MULTILINESTRING, POLYGON, MULTIPOLYGON
Coordinate system is leaflet(default), geo or cartesian3D (for POINT(xyz))
Limitations:
polygons can have only their name in tooltip,
assumes Geodetic CRS is WGS 84, for conversion use st_transform with crs=4326.
Parameters:
df - value from st_read
nid - optional column name for name-id used in tooltips
cs - optional coordinateSystem value, default 'leaflet'
verbose - optional, print shapefile item names in console
Returns a list of chart series
cmd = 'sf.bbox'
Returns JavaScript code to position a map inside a bounding box from st_bbox, for leaflet only.
cmd = 'sf.unzip'
Unzips a remote file and returns local file name of the unzipped .shp file
url - URL of remote zipped shapefile
shp - optional name of .shp file inside ZIP file if multiple exist. Do not add file extension.
cmd = 'geojson'
Custom series list from geoJson objects
geojson - object from fromJSON
cs - optional coordinateSystem value, default 'leaflet'
ppfill - optional fill color like '#F00', OR NULL for no-fill, for all Points and Polygons
nid - optional feature property for item name used in tooltips
... - optional custom series attributes like itemStyle
Can display also geoJson feature properties: color; lwidth, ldash (lines); ppfill, radius (points)
cmd = 'layout'
Multiple charts in table-like rows/columns format
... - List of charts
title - optional title for the set, rows= Number of rows, cols= Number of columns
Returns a container div in rmarkdown, otherwise browsable.
For 3-4 charts one would use multiple series within a grid.
For greater number of charts ec.util(cmd='layout') comes in handy
cmd = 'tabset'
... - a list name/chart pairs like n1=chart1, n2=chart2, each tab may contain a chart.
tabStyle - tab style string, see default tabStyle variable in the code
Returns A) tagList of tabs when in a pipe without '...' params, see example
Returns B) browsable when '...' params are provided by user
cmd = 'button'
UI button to execute a JS function,
text - the button label
js - the JS function string
... - optional parameters for the rect element
Returns a graphic.elements-rect element.
cmd = 'morph'
... - a list of charts or chart options
js - optional JS function for switching charts. Default function is on mouseover. Disable with FALSE.
Returns a chart with ability to morph into other charts
cmd = 'fullscreen'
A toolbox feature to toggle fullscreen on/off. Works in a browser, not in RStudio.
cmd = 'rescale'
v - input vector of numeric values to rescale
t - target range c(min,max), numeric vector of two
cmd = 'level'
Calculate vertical levels for timeline line charts, returns a numeric vector
df - data.frame with from and to columns
from - name of 'from' column
to - name of 'to' column
if (interactive()) { # comm.out: Fedora errors about some 'browser' library(sf) fname <- system.file("shape/nc.shp", package="sf") nc <- as.data.frame(st_read(fname)) ec.init(load= c('leaflet', 'custom'), # load custom for polygons js= ec.util(cmd= 'sf.bbox', bbox= st_bbox(nc$geometry)), series= ec.util(cmd= 'sf.series', df= nc, nid= 'NAME', itemStyle= list(opacity=0.3)), tooltip= list(formatter= '{a}') ) htmltools::browsable( lapply(iris |> dplyr::group_by(Species) |> dplyr::group_split(), function(x) { x |> ec.init(ctype= 'scatter', title= list(text= unique(x$Species))) }) |> ec.util(cmd= 'tabset') ) p1 <- cars |> ec.init(grid= list(top= 20)) # move chart up p2 <- mtcars |> ec.init() ec.util(cmd= 'tabset', cars= p1, mtcars= p2, width= 333, height= 333) lapply(list('dark','macarons','gray','jazz','dark-mushroom'), \(x) cars |> ec.init() |> ec.theme(x) ) |> ec.util(cmd='layout', cols= 2, title= 'my layout') setd <- \(type) { mtcars |> group_by(cyl) |> ec.init(ctype= type, title= list(subtext= 'mouseover points to morph'), xAxis= list(scale= TRUE)) } oscatter <- setd('scatter') obar <- setd('bar') ec.util(cmd='morph', oscatter, obar) }
if (interactive()) { # comm.out: Fedora errors about some 'browser' library(sf) fname <- system.file("shape/nc.shp", package="sf") nc <- as.data.frame(st_read(fname)) ec.init(load= c('leaflet', 'custom'), # load custom for polygons js= ec.util(cmd= 'sf.bbox', bbox= st_bbox(nc$geometry)), series= ec.util(cmd= 'sf.series', df= nc, nid= 'NAME', itemStyle= list(opacity=0.3)), tooltip= list(formatter= '{a}') ) htmltools::browsable( lapply(iris |> dplyr::group_by(Species) |> dplyr::group_split(), function(x) { x |> ec.init(ctype= 'scatter', title= list(text= unique(x$Species))) }) |> ec.util(cmd= 'tabset') ) p1 <- cars |> ec.init(grid= list(top= 20)) # move chart up p2 <- mtcars |> ec.init() ec.util(cmd= 'tabset', cars= p1, mtcars= p2, width= 333, height= 333) lapply(list('dark','macarons','gray','jazz','dark-mushroom'), \(x) cars |> ec.init() |> ec.theme(x) ) |> ec.util(cmd='layout', cols= 2, title= 'my layout') setd <- \(type) { mtcars |> group_by(cyl) |> ec.init(ctype= type, title= list(subtext= 'mouseover points to morph'), xAxis= list(scale= TRUE)) } oscatter <- setd('scatter') obar <- setd('bar') ec.util(cmd='morph', oscatter, obar) }
A 'custom' serie with lower and upper boundaries
ecr.band(df = NULL, lower = NULL, upper = NULL, type = "polygon", ...)
ecr.band(df = NULL, lower = NULL, upper = NULL, type = "polygon", ...)
df |
A data.frame with lower and upper numerical columns and first column with X coordinates. |
lower |
The column name of band's lower boundary (string). |
upper |
The column name of band's upper boundary (string). |
type |
Type of rendering
|
... |
More attributes for serie |
type='polygon': coordinates of the two boundaries are chained into one polygon.
xAxis type could be 'category' or 'value'.
Set fill color with attribute color.
type='stack': two stacked lines are drawn, the lower with customizable areaStyle.
xAxis type should be 'category' !
Set fill color with attribute areaStyle$color.
Optional tooltip formatter available in band[[1]]$tipFmt.
Optional parameter name, if given, will show up in legend. Legend merges all series with same name into one item.
A list of one serie when type='polygon', or list of two series when type='stack'
set.seed(222) df <- data.frame( x = 1:10, y = round(runif(10, 5, 10),2)) |> dplyr::mutate(lwr= round(y-runif(10, 1, 3),2), upr= round(y+runif(10, 2, 4),2) ) banda <- ecr.band(df, 'lwr', 'upr', type='stack', name='stak', areaStyle= list(color='green')) #banda <- ecr.band(df, 'lwr', 'upr', type='polygon', name='poly1') df |> ec.init( load='custom', # polygon only legend= list(show= TRUE), xAxis= list(type='category', boundaryGap=FALSE), # stack #xAxis= list(scale=T, min='dataMin'), # polygon series= append( list(list(type='line', color='blue', name='line1')), banda ), tooltip= list(trigger='axis', formatter= banda[[1]]$tipFmt) )
set.seed(222) df <- data.frame( x = 1:10, y = round(runif(10, 5, 10),2)) |> dplyr::mutate(lwr= round(y-runif(10, 1, 3),2), upr= round(y+runif(10, 2, 4),2) ) banda <- ecr.band(df, 'lwr', 'upr', type='stack', name='stak', areaStyle= list(color='green')) #banda <- ecr.band(df, 'lwr', 'upr', type='polygon', name='poly1') df |> ec.init( load='custom', # polygon only legend= list(show= TRUE), xAxis= list(type='category', boundaryGap=FALSE), # stack #xAxis= list(scale=T, min='dataMin'), # polygon series= append( list(list(type='line', color='blue', name='line1')), banda ), tooltip= list(trigger='axis', formatter= banda[[1]]$tipFmt) )
Custom series to display error-bars for scatter, bar or line series
ecr.ebars(wt, encode = list(x = 1, y = c(2, 3, 4)), hwidth = 6, ...)
ecr.ebars(wt, encode = list(x = 1, y = c(2, 3, 4)), hwidth = 6, ...)
wt |
An echarty widget to add error bars to, see ec.init. |
encode |
Column selection for both axes (x & y) as vectors, see encode |
hwidth |
Half-width of error bar in pixels, default is 6. |
... |
More parameters for custom serie |
Command should be called after ec.init where main series are set.
ecr.ebars are custom series, so ec.init(load='custom') is required.
Horizontal and vertical layouts supported, just switch encode values x and y for both for series and ecr.ebars.
Have own default tooltip format showing value, high & low.
Grouped bar series are supported.
Non-grouped series could be shown with formatter riErrBarSimple instead of ecr.ebars. This is limited to vertical only, see example below.
Other limitations:
manually add axis type='category' when needed
error bars cannot have own name when data is grouped
legend select/deselect will not re-position grouped error bars
A widget with error bars added if successful, otherwise the input widget
library(dplyr) df <- mtcars |> group_by(cyl,gear) |> summarise(yy= round(mean(mpg),2)) |> mutate(low= round(yy-cyl*runif(1),2), high= round(yy+cyl*runif(1),2)) ec.init(df, load= 'custom', ctype= 'bar', tooltip= list(show=TRUE), xAxis= list(type='category')) |> ecr.ebars(encode= list(y=c(3,4,5), x=2)) # ----- riErrBarSimple ------ df <- mtcars |> mutate(x=1:nrow(mtcars),hi=hp-drat*3, lo=hp+wt*3) |> select(x,hp,hi,lo) ec.init(df, load= 'custom', legend= list(show= TRUE)) |> ec.upd({ series <- append(series, list( list(type= 'custom', name= 'error', data= ec.data(df |> select(x,hi,lo)), renderItem= htmlwidgets::JS('riErrBarSimple') ))) })
library(dplyr) df <- mtcars |> group_by(cyl,gear) |> summarise(yy= round(mean(mpg),2)) |> mutate(low= round(yy-cyl*runif(1),2), high= round(yy+cyl*runif(1),2)) ec.init(df, load= 'custom', ctype= 'bar', tooltip= list(show=TRUE), xAxis= list(type='category')) |> ecr.ebars(encode= list(y=c(3,4,5), x=2)) # ----- riErrBarSimple ------ df <- mtcars |> mutate(x=1:nrow(mtcars),hi=hp-drat*3, lo=hp+wt*3) |> select(x,hp,hi,lo) ec.init(df, load= 'custom', legend= list(show= TRUE)) |> ec.upd({ series <- append(series, list( list(type= 'custom', name= 'error', data= ec.data(df |> select(x,hi,lo)), renderItem= htmlwidgets::JS('riErrBarSimple') ))) })
Once chart changes had been made, they need to be sent back to the widget for display
ecs.exec(proxy, cmd = "p_merge")
ecs.exec(proxy, cmd = "p_merge")
proxy |
A ecs.proxy object |
cmd |
Name of command, default is p_merge |
A proxy object to update the chart.
ecs.proxy, ecs.render, ecs.output
Read about event handling in – Introduction –, code in ec.examples.
if (interactive()) { demo(eshiny, package='echarty') }
if (interactive()) { demo(eshiny, package='echarty') }
Placeholder for a chart in Shiny UI
ecs.output(outputId, width = "100%", height = "400px")
ecs.output(outputId, width = "100%", height = "400px")
outputId |
Name of output UI element. |
width , height
|
Must be a valid CSS unit (like |
An output or render function that enables the use of the widget within Shiny applications.
ecs.exec for example, shinyWidgetOutput for return value.
Create a proxy for an existing chart in Shiny UI. It allows to add, merge, delete elements to a chart without reloading it.
ecs.proxy(id)
ecs.proxy(id)
id |
Target chart id from the Shiny UI. |
A proxy object to update the chart.
ecs.exec for example.
This is the initial rendering of a chart in the UI.
ecs.render(wt, env = parent.frame(), quoted = FALSE)
ecs.render(wt, env = parent.frame(), quoted = FALSE)
wt |
An |
env |
The environment in which to evaluate |
quoted |
Is |
An output or render function that enables the use of the widget within Shiny applications.
ecs.exec for example, shinyRenderWidget for return value.